SINGULARITY OF TOPOLOGICAL CONJUGACIES BETWEEN CERTAIN UNIMODAL MAPS OF THE INTERVAL[†]

BY H. PROPPE, W. BYERS AND A. BOYARSKY

ABSTRACT

Let τ_1 and τ_2 be unimodal maps of the interval [0, 1]. Let ψ be a topological conjugacy between τ_1 and τ_2 . Sufficient conditions are given which guarantee that ψ is singular.

1. Introduction

Let $\{\tau_{\lambda} : \lambda > 1\}$ be a family of maps from [0, 1] onto [0, 1] defined by

$$\tau_{\lambda}(x) = \begin{cases} \lambda x, & 0 \leq x \leq \frac{1}{\lambda}, \\ \left(\frac{\lambda}{1-\lambda}\right)(x-1), & \frac{1}{\lambda} \leq x \leq 1. \end{cases}$$

Let $\tau: [0,1] \rightarrow [0,1]$ be continuous and let it possess a unique turning point c. Under certain further restrictions on τ , we show that the homeomorphism $\psi: [0,1] \rightarrow [0,1]$, which renders τ_{λ} and τ topologically conjugate, is singular.

2. Main results

Let $\sigma : [0, 1] \rightarrow [0, 1]$ be any piecewise monotonic continuous map with unique maximum, satisfying $\sigma(0) = 0 = \sigma(1)$. To every such map we can associate a symmetry map $\beta : [0, 1] \rightarrow [0, 1]$ such that $\beta(x) = y$ if and only if $\sigma(x) = \sigma(y)$, $\beta \neq$ identity.

Let τ_{λ} , $\lambda > 1$, be as above. The symmetry map of τ_{λ} is given by

$$\beta_{\lambda}(x) = \begin{cases} 1 + (1 - \lambda)x, & 0 \leq x \leq \frac{1}{\lambda}, \\ \frac{x - 1}{1 - \lambda}, & \frac{1}{\lambda} \leq x \leq 1. \end{cases}$$

' This research was supported by NSERC Grants and an FCAC grant from the Quebec government.

Received January 31, 1982

Let Q denote the class of continuous maps $\tau: [0,1] \rightarrow [0,1]$, not necessarily expanding, which satisfy:

- (i) τ has a unique turning point c,
- (ii) τ is increasing and C' on (0, c) and decreasing and C' on (c, 1),
- (iii) $\tau(0) = \tau(1) = 0, \ \tau(c) = 1,$
- (iv) $1 < \lambda_2 \equiv \inf_{(0,c)} |\tau'(x)|$.

LEMMA 1. Let $\tau \in Q$ and define $M_2 = \sup_{(0,c)} |\beta'(x)|$, where β is the symmetry map for τ . If $1 < \lambda < \lambda_2$, then

$$a = \log\left(\frac{\lambda - 1}{M_2}\right) / \log\left(\frac{\lambda}{\lambda_2}\right) > 1.$$

PROOF. Clearly $\lambda_2 \leq 1/c$. Since $\beta(0) = 1$ and $\beta(c) = c$,

$$M_2 \ge 1/c - 1 \ge \lambda_2 - 1.$$

Thus,

$$a = \log\left(\frac{M_2}{\lambda - 1}\right) / \log\left(\frac{\lambda_2}{\lambda}\right) > \log\left(\frac{\lambda_2 - 1}{\lambda - 1}\right) / \log\left(\frac{\lambda_2}{\lambda}\right) > 1. \quad \text{Q.E.D.}$$

THEOREM 1. Let $\tau \in Q$. Assume

(1)
$$\left(\frac{\lambda}{\lambda_2}\right)^{\lambda} < \left(\frac{\lambda-1}{M_2}\right)^{\lambda-1}$$

for some $\lambda > 1$, where $\lambda_2 \neq \lambda$. Then any monotonic semi-conjugacy ψ from τ_{λ} onto τ (i.e. $\psi : [0,1] \rightarrow [0,1]$ is monotonic and satisfies $\psi \circ \tau_{\lambda} = \tau \circ \psi$) is singular.

PROOF. We begin by specifying a certain countable dense subset of $[0, 1/\lambda]$ on which ψ can be determined exactly. To that end, let D denote the set of inverse images under τ_{λ} of the turning point $1/\lambda$ having the form

$$\lambda^{-n_1} + (1-\lambda)^{-(n_1+n_2)} + \cdots + (1-\lambda)^{k-1}\lambda^{-(n_1+\cdots+n_k)},$$

where $\{n_1, n_2, \dots, n_k\}$ is any finite sequence of positive integers. Note that $(1-\lambda) < 0$. We begin by showing that D is dense. Given any $x \in [0, 1/\lambda] - D$, choose n_1 such that

$$\lambda^{-(n_1+1)} < x < \lambda^{-n_1}$$

and set $x_1 = \lambda^{-n_1}$. Then,

$$x_1 - x < \left(\frac{\lambda - 1}{\lambda}\right) \lambda^{-n_1}$$
 or $x_1 - \left(\frac{\lambda - 1}{\lambda}\right) \lambda^{-n_1} < x$.

Since $(\lambda - 1)/\lambda^n \rightarrow 0$, we can find an $n_2 \ge 1$ such that

$$\lambda^{-n_1} + (1-\lambda)\lambda^{-(n_1+n_2)} < x < \lambda^{-n_1} + (1-\lambda)\lambda^{-(n_1+n_2+1)}.$$

Letting $x_2 = \lambda^{-n_1} + (1 - \lambda) \lambda^{-(n_1 + n_2)}$, we get

$$x < x_2 + \frac{(\lambda - 1)^2}{\lambda} \lambda^{-(n_1 + n_2)}$$

Thus, we can find $n_3 \ge 1$ such that

$$\lambda^{-n_1} + (1-\lambda)^{-(n_1+n_2)} + (1-\lambda)^2 \lambda^{-(n_1+n_2+n_3+1)} < x$$

$$< \lambda^{-n_1} + (1-\lambda) \lambda^{-(n_1+n_2)} + (1-\lambda)^2 \lambda^{-(n_1+n_2+n_3)}$$

Then

$$x_3 - \frac{(\lambda - 1)^3}{3} \lambda^{-(n_1 + n_2 + n_3)} < x$$

where $x_3 = \lambda^{-n_1} + (1 - \lambda)\lambda^{-(n_1 + n_2)} + (1 - \lambda)^2 \lambda^{-(n_1 + n_2 + n_3)}$. We continue in this way to define a sequence of integers n_1, n_2, \cdots and a sequence of points $\{x_k\}_{k=1}^{\infty} \in D$ defined by

$$x_k = \sum_{i=1}^{k} (1-\lambda)^{i-1} \lambda^{-(n_1+n_2+\cdots+n_i)}.$$

Since

$$|x-x_k| < \frac{(\lambda-1)^k}{\lambda^{k+1}} \rightarrow 0$$
 as $k \rightarrow \infty$,

the sequence $\{x_k\}_{k=1}^{\infty}$ converges to x.

We next consider how points in D behave under the semiconjugacy ψ . The conjugacy condition may be written as follows:

.

(2)
$$\psi(x) = \begin{cases} \tau_{2,1}^{-1} \psi(\lambda x), & 0 \le x \le \frac{1}{\lambda}, \\ \tau_{2,1}^{-1} \psi\left(\frac{\lambda}{\lambda - 1}(1 - x)\right), & \frac{1}{\lambda} \le x \le 1, \end{cases}$$

where $\tau_{2,1} = \tau_2 |_{[0,c]}$ and $\tau_{2,2} = \tau_2 |_{[c,1]}$. Equivalently, we have

(3)
$$\begin{cases} \psi(x/\lambda) = \tau_{2,1}^{-1}(\psi(x)), & 0 \le x \le 1, \\ \psi(1-(\lambda-1)x) = \tau_{2,2}^{-1}(\tau_{2,1}(\psi(x))) = \beta \psi(x), & 0 \le x \le 1/\lambda. \end{cases}$$

It follows that

$$\psi\left(\frac{1}{\lambda^{n}}\right) = \tau_{2,1}^{-n}(1), \qquad \psi\left(1-\frac{\lambda-1}{\lambda^{n}}\right) = \beta\tau_{2,1}^{-n}(1),$$

and in general,

$$\psi\left(\frac{1}{\lambda^{n_1}}+\frac{(1-\lambda)}{\lambda^{n_1+n_2}}+\cdots+\frac{(1-\lambda)^{k-1}}{\lambda^{n_1+\cdots+n_k}}\right)=\tau_{2,1}^{n_1}\circ\beta\circ\tau_{2,1}^{n_2}\circ\beta\circ\cdots\circ\beta\circ\tau_{2,1}^{n_k}(1).$$

Therefore, given any $x \in [0, 1/\lambda] - D$ with approximating sequence $\{x_k\}_{k=1}^{\infty}$ given by the sequence of integers $\{n_k\}_{k=1}^{\infty}$, we have

$$|\psi(x_k) - \psi(x_{k-1})| < (1/\lambda_2)^{n_1+n_2+\cdots+n_{k-1}} M_2^{k-2} |\beta \tau_{2,1}^{-n_k}(1) - 1|.$$

But

 $|\beta \tau_{2,1}^{-n_{k}}(1) - 1| \leq M_{2} \tau_{2,1}^{-n_{k}}(1) \leq M_{2}(1/\lambda_{2})^{n_{k}},$

since $\beta(0) = 1$. Thus,

$$|\psi(x_k) - \psi(x_{k-1})| < M_2^{k-1} (1/\lambda_2)^{n_1 + \cdots + n_k}$$

Note also that

$$|x_k - x_{k-1}| = \frac{(\lambda - 1)^{k-1}}{\lambda^{n_1 + \dots + n_k}}.$$

Hence,

$$\left|\frac{\psi(x_k)-\psi(x_{k-1})}{x_k-x_{k-1}}\right| \leq \left(\frac{\lambda}{\lambda_2}\right)^{n_1+\cdots+n_k} \left(\frac{M_2}{\lambda-1}\right)^{k-1}.$$

We will show that

(4)
$$\liminf_{k \to \infty} \frac{\psi(x_k) - \psi(x_{k-1})}{x_k - x_{k-1}} = 0$$

for almost every $x \in [0, 1/\lambda]$. Since the points x_{k-1} and x_k lie on opposite sides of x, this implies that $\psi'(x) = 0$ a.e. on $[0, 1/\lambda]$ and hence on [0, 1] by (2). Thus ψ is singular.

Let $x \in (0, 1/\lambda) - D$, and consider the inequality

(5)
$$\left(\frac{\lambda}{\lambda_2}\right)^{n_1+\cdots+n_k} \left(\frac{M_2}{\lambda-1}\right)^{k-1} < \varepsilon.$$

If $\lambda > \lambda_2$, this is equivalent to

$$(6a) n_1 + \cdots + n_k < ak + b_1$$

whereas if $\lambda < \lambda_2$ we get

$$(6b) n_1 + \cdots + n_k > ak + b_2$$

where

$$a = \log\left(\frac{\lambda-1}{M_2}\right) / \log\left(\frac{\lambda}{\lambda_2}\right)$$

and b_1 , b_2 are constants (depending on ε). We note that a > 1: this follows from (1) if $\lambda > \lambda_2$ and from Lemma 1 if $\lambda < \lambda_2$.

If $\alpha < a$ and $n_1 + \cdots + n_k \leq \alpha k$ is satisfied for arbitrarily large k, so is 6(a) for any b_1 . Similarly, if $\alpha > a$ and $n_1 + \cdots + n_k > \alpha k$ holds for infinitely many values of k, so does 6(b) for any b_2 .

Let $E = \{x \in (0, 1/\lambda) | \psi'(x) \text{ exists}\}$; we note that E is measurable and $m(E) = 1/\lambda$ (m = Lebesgue measure). Let

$$A_{k} = A_{k}(\alpha) = \{x \in (0, 1/\lambda) - D \mid n_{1} + \dots + n_{k} \leq \alpha k\},\$$
$$A_{k}' = A_{k}'(\alpha) = \{x \in (0, 1/\lambda) - D \mid n_{1} + \dots + n_{k} > \alpha k\},\$$
$$E_{k} = A_{k} \cap E \quad \text{and} \quad E_{k}' = A_{k}' \cap E.$$

Then $m(A_k) = m(E_k)$, $m(A'_k) = m(E'_k)$ and $m(A_k \cup A'_k) = 1/\lambda$ for a fixed α .

If $\lambda > \lambda_2$ and $\alpha < a$ the above implies that $\limsup_k E_k \subset \{x \in E \mid \psi'(x) = 0\}$, whereas if $\lambda < \lambda_2$ and $\alpha > a$ we have

$$\limsup_{k} E'_{k} \subset \{x \in E \mid \psi'(x) = 0\}.$$

Thus if we show that

$$m(E_{k_i}) = m(A_{k_i}) \rightarrow \begin{cases} 1/\lambda & \text{if } \lambda > \lambda_2 \\ 0 & \text{if } \lambda < \lambda_2 \end{cases}$$

for some sequence $\{k_i\}$ of positive integers and for all rational α near a, the result follows. Let

$$F_k = \{x \in (0, 1/\lambda) - D \mid n_1, \cdots, n_k \text{ in the} \}$$

approximating sequence for x are fixed}.

Then

$$m(F_k) = \frac{1}{\lambda} \frac{(\lambda - 1)^k}{\lambda^{(n_1 + \dots + n_k)}}$$

and

$$m(A_k) = m\left(\bigcup_{\substack{k=1\\k=1}}^{\infty} \{F_k \mid n_1 + \cdots + n_k \leq \alpha k\}\right)$$
$$= \sum_{\substack{n_1 + \cdots + n_k \leq \alpha k\\ n_i \geq 1}} m(F_k)$$

$$=\frac{1}{\lambda}\sum_{\substack{n=0\\n_1\neq 1}}^{(\alpha-1)k}\sum_{\substack{n_1+\cdots+n_k=k+n\\n_i\geq 1}}\frac{(\lambda-1)^k}{\lambda^{n_1+\cdots+n_k}},$$

where we choose k so that αk is integral.

Now, for a fixed *n*, the number of distinct *k*-tuples (n_1, \dots, n_k) satisfying $n_1 + \dots + n_k = k + n$ is easily seen to be $\binom{k+n-1}{k-1}$. Thus

$$m(A_k) = \frac{1}{\lambda} \sum_{n=0}^{(\alpha-1)^k} p p^{k-1} q^n \binom{n+k-1}{k-1},$$

where we have put $p = 1 - 1/\lambda$, $q = 1 - p = 1/\lambda$. Since $p^{k-1}q^n \binom{n+k-1}{k-1}$ is the probability of the event $S_{n+k-1} = k - 1$: k - 1 successes after n + k - 1 Bernoulli trials with probability p of success, we have

$$m(A_k) = \frac{1}{\lambda} \sum_{n=0}^{(\alpha-1)k} pP(S_{n+k-1} = k-1)$$

= $\frac{1}{\lambda} \sum_{n=0}^{(\alpha-1)k} P(S_{n+k-1} = k-1 \text{ and } S_{n-k} = k)$
= $\frac{1}{\lambda} \sum_{n=0}^{(\alpha-1)k} P(\text{first occurrence of } k^{\text{th}} \text{ success is at trial } n+k)$
= $\frac{1}{\lambda} P(S_{ak} \ge k).$

By the central limit theorem, if

$$I_k(\alpha) = \frac{1}{\lambda} \frac{1}{\sqrt{2\pi}} \int_{\frac{k(1-\alpha p)}{\sqrt{\alpha k p q}}}^{\infty} e^{-x^2/2} dx$$

then

$$\lim_{i} I_{k_i} = \lim_{i} m(A_{k_i}),$$

where $k_i \alpha$ are integral.

Assume first $\lambda > \lambda_2$. From (1) we have

$$\left(\frac{\lambda-1}{\lambda}\right)\log\left(\frac{\lambda-1}{M_2}\right)/\log\left(\frac{\lambda}{\lambda_2}\right)>1,$$

i.e., ap > 1 and so $1 - \alpha p < 0$ for rational α close to a. Thus

$$\lim_{i} m(A_{k_i}) = \lim_{i} I_{k_i} = \frac{1}{\lambda}.$$

If $\lambda < \lambda_2$, (1) is equivalent to ap < 1 and so $1 - \alpha p > 1$ for α close to a. Thus

$$\lim_{i} m(A_{k_i}) = \lim_{i} I_{k_i} = 0.$$
 Q.E.D.

To show that Theorem 1 has content, we establish

LEMMA 2. If a > b > 1 then

$$\left(\frac{a-1}{b-1}\right)^{a-1} > \left(\frac{a}{b}\right)^a > \left(\frac{a}{b}\right)^b > \left(\frac{a-1}{b-1}\right)^{b-1}$$

PROOF. Put

$$f(x) = \left(\frac{a-x}{b-x}\right)^{c-x}.$$

We must show that if c = a, f(0) < f(1) and if c = b, f(0) > f(1) (the middle inequality is trivial). By elementary calculus,

$$\frac{f'}{f} = \frac{(c-x)(a-b)}{(a-x)(b-x)} - \log\left(\frac{a-x}{b-x}\right); \quad x < b.$$

If c = a,

$$\frac{f'}{f} = \frac{a-b}{b-x} - \log\left[1 + \frac{a-b}{b-x}\right] > 0.$$

If c = b,

$$\frac{f'}{f} = 1 - \frac{b-x}{a-x} - \log\left(\frac{a-x}{b-x}\right) < 0.$$

COROLLARY 1. If $1 < \lambda_2 \neq \lambda$, then τ_{λ_2} satisfies the conditions of Theorem 1. Moreover, if τ is any map in Q, which differs from some such τ_{λ_2} by a sufficiently C^1 -small perturbation, then any monotonic semiconjugacy from τ_{λ} onto τ is singular.

PROOF. If $\lambda_2 > \lambda > 1$, we have from Lemma 2 that

$$\left(\frac{\lambda_2}{\lambda}\right)^{\lambda} > \left(\frac{\lambda_2-1}{\lambda-1}\right)^{\lambda-1}.$$

Since $M_2 = \lambda_2 - 1$ if $\tau = \tau_{\lambda_2}$, it follows that (1) of Theorem 1 is also satisfied.

If $\lambda > \lambda_2 > 1$ we have from Lemma 2,

$$\left(\frac{\lambda-1}{\lambda_2-1}\right)^{\lambda-1} > \left(\frac{\lambda}{\lambda_2}\right)^{\lambda},$$

which again is (1) of Theorem 1.

Since (1) is an open condition, it is also satisfied by all τ close to τ_{λ_2} . Q.E.D.

REMARK. By putting $\sigma_2 = \sup_{(0,c)} |\tau'|$ and $m_2 = \inf_{(0,c)} |\beta'|$ one obtains a lower bound for

$$\left|\frac{\psi(x_k)-\psi(x_{k-1})}{x_k-x_{k-1}}\right|.$$

One can then show, using the same arguments as in Lemma 1 and Theorem 1, that if

$$\left(\frac{\lambda}{\sigma_2}\right)^{\lambda} > \left(\frac{\lambda-1}{m_2}\right)^{\lambda-1},$$

then

$$\psi'(\mathbf{x}) = \infty$$
 a.e.,

and conclude from this contradiction that a monotonic semiconjugacy ψ from τ_{λ} to τ does not exist. However, this result is vacuous, since

$$\left(\frac{\lambda}{\sigma_2}\right)^{\lambda} \leq \left(\frac{\lambda}{c^{-1}}\right)^{\lambda} \leq \left(\frac{\lambda-1}{c^{-1}-1}\right)^{\lambda-1} \leq \left(\frac{\lambda-1}{m_2}\right)^{\lambda-1}$$

where c is the turning point of τ . The middle inequality is strict if $\lambda \neq c^{-1}$ by Corollary 1.

EXAMPLE. Condition (1) can be written as

$$M_2 < \frac{(\lambda-1)}{\lambda^{\lambda/(\lambda-1)}} \lambda_2^{\lambda/(\lambda-1)}.$$

Let $\lambda = 2$. Then,

 $M_2 < \frac{1}{4} \lambda_2^2$.

Choose $\lambda_2 = 4$ and $\tau(x) = 4x$ on $[0, \frac{1}{2}]$. Then, since $M_2 \ge \lambda_2 - 1$, we require: $3 \le M_2 < 4$. Let 0 < m < 1 and let

$$\tau(x) = (\frac{4}{3})^m (1-x)^m, \qquad \frac{1}{4} \le x \le 1.$$

Clearly, τ is continuous on [0, 1]. Now $\beta(x) = y$ iff $\tau(x) = \tau(y)$, i.e. iff

$$4x = (\frac{4}{3})^m (1-y)^m,$$

or

$$y = 1 - \frac{3}{4} 4^{1/m} x^{1/m}.$$

Thus, on differentiating, we obtain:

$$|\beta'(x)| = \left|\frac{dy}{dx}\right| = \frac{3}{4} 4^{1/m} \frac{1}{m} x^{1/m-1},$$

and

$$M_2 = \sup_{(0,c)} |\beta'(x)| = \frac{3}{4} 4^{1/m} \frac{1}{m} (\frac{1}{4})^{1/m-1} = \frac{3}{m}.$$

Hence, $3 \le M_2 < 4$ iff $\frac{3}{4} < m \le 1$. Thus, for any such *m*, condition (1) of Theorem 1 holds.

Given any $\lambda_2 > 1$ and $M_2 > \lambda_2 - 1$ we can define a map $\tau \in Q$ as follows. Choose the turning point c such that $1/c < \lambda_2 < M_2 + 1$ and construct a strictly increasing map τ_1 on [0, c] such that $\tau_1(0) = 0$, $\tau_1(c) = 1$ and $\inf |\tau'_1(x)| = \lambda_2$.

Now, it is easy to see that any symmetry map $\beta : [0,1] \rightarrow [0,1]$ satisfies: $\beta(0) = 1, \beta(c) = c, \beta(1) = 0$ and $\beta |_{[c,1]}$ is the reflection of $\beta |_{[0,c]}$ around the line y = x. Since $M_2 > 1/c - 1$ and the slope of the line joining points (0,1) and (c, c) is -(1/c - 1), we can construct $\beta |_{[0,c]}$ satisfying

$$M_2 = \sup_{(0,c)} |\beta'(x)| > 1/c - 1.$$

By reflecting around y = x, we define β on [0, 1].

Thus, so far, we have defined $\tau |_{[0,c]}$ and β . To define $\tau_2 = \tau |_{[c,1]}$, we note that from the definition of β , we have

$$\tau_2(x) = \tau_1(\beta(x)).$$

This defines τ_2 . Clearly $\tau_2(c) = 1$, $\tau_2(1) = 0$ and since $\tau'_1(x) > 0$, $\beta'(x) < 0$, $\tau'_2 < 0$. Thus τ_2 is monotonic decreasing and hence $\tau \in Q$.

PROPOSITION 1. Given any $\lambda_2 > 1$ and $M_2 > \lambda_2 - 1$, let $\tau \in Q$ be a map possessing these parameters. Then there exists $\lambda > 1$ such that the topological conjugacy from τ_{λ} onto τ is singular.

PROOF. We have only to show that condition (1) is satisfied for some $\lambda > 1$. To see that this is, indeed, the case let $\lambda \downarrow 1$ in (1) to obtain the inequality

$$1/\lambda_2 < 1$$
,

since $x^{x} \rightarrow 1$ as $x \rightarrow 0$, which is obviously satisfied. Q.E.D.

COROLLARY 2. Let τ_2 be as in Theorem 1 and let it have injective invariant coordinate [1] (for example, if τ_2 is expanding [1,2]), then τ_{λ} is topologically conjugate to τ_2 and the homeomorphisms ψ and ψ^{-1} are singular.

H. PROPPE ET AL.

Q.E.D.

_

PROOF. That the conjugacy exists and is a homeomorphism follows from arguments in [1, 2, 4]. The above result shows that ψ is singular. It follows that ψ^{-1} must also be singular [5, p. 271, problem 13].

COROLLARY 3. Any expanding map τ_2 which satisfies the conditions of Theorem 1 admits an uncountable family of invariant ergodic measures which are mutually singular.

PROOF. Consider the space \mathscr{C} of continuous functions $f:[0,1] \rightarrow [0,1]$ satisfying f(0) = 0, f(1) = 1 and the transformation $T: \mathscr{C} \rightarrow \mathscr{C}$ defined by

(7)
$$(T_{\lambda}f)(x) = \begin{cases} (\tau_{2,1}^{-1} \circ f \circ \tau_{\lambda})(x), & 0 \leq x \leq 1/\lambda, \\ (\tau_{2,2}^{-1} \circ f \circ \tau_{\lambda})(x), & 1/\lambda \leq x \leq 1. \end{cases}$$

 \mathscr{C} is complete in the uniform metric and, since τ_2 is expanding, T_{λ} is a contraction mapping with unique fixed point ψ_{λ} . Theorem 1 and Corollary 1 apply to all maps τ_2 with $\lambda > \max\{\lambda_2, M_2 + 1\}$ or $\lambda < \min\{\lambda_2, M_2 + 1\}$. Let λ', λ'' , $\lambda' \neq \lambda''$ be any two allowable values for λ . Let ψ_1 and ψ_2 be the conjugacies, respectively, which map $\tau_{\lambda'}$, $\tau_{\lambda''}$ onto τ_2 . Then

$$m_{\lambda'}(A) = m(\psi_1^{-1}(A))$$
 and $m_{\lambda'}(A) = m(\psi_2^{-1}(A))$

are two continuous ergodic measures invariant under τ_2 . Since τ_{λ} is ergodic with invariant measure *m* for any $\lambda > 1$,

$$m_{\lambda'}[0,c] = 1/\lambda'$$
 and $m_{\lambda'}[0,c] = 1/\lambda''$,

 $m_{\lambda'}$ and $m_{\lambda''}$ are mutually singular.

3. Some consequences

PROPOSITION 2. Let τ_{λ} and τ be as in Theorem 1, and let ψ be the conjugacy which takes τ_{λ} to τ . Let $\tau_1:[0,1] \rightarrow [0,1]$ be any map which is taken to τ_{λ} by the conjugacy ϕ whose inverse is absolutely continuous. Then the topological conjugacy $\psi \circ \phi$ which takes τ_1 to τ is singular.

PROOF. Let E be a set of Lebesgue measure 0. Then $B = \phi^{-1}(E)$ has Lebesgue measure 0 since ϕ^{-1} is absolutely continuous. Since ψ is singular there exists a set E, m(E) = 0, such that $m(\psi(E)) > 0$. But $E = \phi(B)$, where m(B) = 0. Hence $m(\psi \circ \phi(B)) > 0$, and $\psi \circ \phi$ is singular.

EXAMPLE. Let
$$\tau_1(x) = 4x(1-x)$$
. Then $\phi(x) = (2/\pi)\sin^{-1}(\sqrt{x})$ takes τ_1 to
 $\bar{\tau}(x) = \begin{cases} 2x, & 0 \le x \le \frac{1}{2}, \\ 2(1-x), & \frac{1}{2} \le x \le 1. \end{cases}$

Let τ_{λ} , $\lambda \neq 2$, play the role of τ in Theorem 1, where ψ , singular, takes $\bar{\tau}$ to τ_{λ} . Since $\phi(x) = (2/\pi) \sin^{-1}(\sqrt{x})$, ϕ^{-1} is absolutely continuous and $\psi \circ \phi$ taking τ_1 to τ_{λ} is singular. Hence $\bar{\tau}$ is the only τ_{λ} map for which the topological conjugacy between τ_1 and τ_{λ} is absolutely continuous.

In [3], Kowalski studied continuity of absolutely continuous invariant measures for piecewise monotonic expanding maps. In this section we obtain a related result for continuous invariant measures.

For $\lambda > 1$, define the map $T_{\lambda} : \mathscr{C} \to \mathscr{C}$ by (7). T_{λ} is a contraction mapping and hence has a unique fixed point $\psi_{\lambda} \in \mathscr{C}$ for each $\lambda > 1$. Let $\| \|$ denote the uniform norm on \mathscr{C} , and let J denote either of the intervals (α, ∞) or $(1, \rho)$, where $\alpha = \max \{\lambda_2, M_2 + 1\}$ and $\rho = \min \{\lambda_2, M_2 + 1\}$.

LEMMA 3. The map $J \to (\mathcal{C}, \| \|)$ defined by $\lambda \to T_{\lambda f}^{k}$, for $f \in \mathcal{C}$ fixed, is continuous for all $k \ge 1$.

PROOF. Since

$$(T^{k}f)(x) = \begin{cases} \tau_{2,1}^{-1} \circ \cdots \circ \tau_{2,1}^{-1} \circ f \circ \tau_{\lambda} \circ \cdots \circ \tau_{\lambda}(x), & 0 \leq x \leq 1/\lambda, \\ \tau_{2,2}^{-1} \circ \cdots \circ \tau_{2,2}^{-1} \circ f \circ \tau_{\lambda} \circ \cdots \circ \tau_{\lambda}(x), & 1/\lambda \leq x \leq 1, \end{cases}$$

k times

and τ_{λ} is continuous with respect to λ , we obtain the result. Q.E.D.

PROPOSITION 3. The map $J \to (\mathscr{C}, \| \|)$ defined by $\lambda \to \psi_{\lambda}$ is continuous.

PROOF. Let $\lambda_n \to \lambda$ as $n \to \infty$, where $\{\lambda_n\} \subset J$ and $\lambda \in J$. Then

$$\|\psi_{\lambda_n}-\psi_{\lambda}\| \leq \|\psi_{\lambda_n}-T^k_{\lambda_n}\psi_{\lambda}\|+\|T^k_{\lambda_n}\psi_{\lambda}-T^k_{\lambda}\psi_{\lambda}\|+\|T^k_{\lambda}\psi_{\lambda}-\psi_{\lambda}\|.$$

Since T_{λ_n} is a contraction, $T_{\lambda_n}^k \psi_{\lambda} \to \psi_{\lambda_n}$ as $k \to \infty$. The second term on the right-hand side tends to 0 as $n \to \infty$ by Lemma 3. The third term is identically 0.

Q.E.D.

Now for each $\lambda \in J$, ψ_{λ} induces a continuous ergodic measure which is invariant with respect to τ and which is given by $m_{\lambda}(A) = m(\psi_{\lambda}^{-1}(A))$. The distribution function associated with m_{λ} is

$$F_{\lambda}(\mathbf{x}) = m(\psi_{\lambda}^{-1}[0,\mathbf{x}]) = \psi_{\lambda}^{-1}(\mathbf{x}).$$

PROPOSITION 4. The map $J \rightarrow (\mathcal{C}, \| \|)$ defined by $\lambda \rightarrow F_{\lambda}$ is continuous.

PROOF. The map $(\mathscr{C}, \| \|) \to (\mathscr{C}, \| \|)$ defined by $f \to f^{-1}$ is a homeomorphism. This with Proposition 3 yields the result. Q.E.D.

Let τ be equal to $\tilde{\tau}$ defined in the above example. Then we have the following result: as $\lambda \to 2$, the continuous ergodic measures m_{λ} , invariant with respect to $\bar{\tau}$,

approach the absolutely continuous ergodic measure m, invariant under $\bar{\tau}$, uniformly.

For the same example, let

$$\eta_{\lambda}(A) = m(\psi_{\lambda}(A))$$

denote the continuous ergodic measure, invariant under τ_{λ} , induced by $\overline{\tau}$. Reasoning as above, it follows that $\lambda_n \to \lambda$ implies $\eta_{\lambda_n}(0, x) \to \eta_{\lambda}(0, x)$ uniformly. This result is similar to results obtained in [3] for absolutely continuous invariant measures.

References

1. W. Byers, Topological semi-conjugacy of piecewise monotonic maps of the interval, Trans. Am. Math. Soc., to appear.

2. J. Guckenheimer, Sensitive dependence on initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), 133-160.

3. Z. S. Kowalski, Continuity of invariant measures for piecewise monotonic transformations, Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys. 32(5) (1975), 519-523.

4. J. Milnor and W. Thurston, On iterated maps of the interval I, preprint, Princeton, 1977.

5. I. P. Natanson, Theory of Functions of a Real Variable, Vol. 1, Ungar, New York, 1955.

DEPARTMENT OF MATHEMATICS CONCORDIA UNIVERSITY MONTREAL, CANADA H3G 1M8