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SINGULARITY OF TOPOLOGICAL
CONJUGACIES BETWEEN CERTAIN
UNIMODAL MAPS OF THE INTERVAL'

BY
H. PROPPE, W. BYERS AND A. BOYARSKY

ABSTRACY
Let 7, and 7, be unimodal maps of the interval [0,1]. Let ¢ be a topological
conjugacy between 7, and 7,. Sufficient conditions are given which guarantee
that ¢ is singular.

1. Introduction

Let {r, : A > 1} be a family of maps from [0, 1] onto [0, 1] defined by

AX, 0§x§x,
m(x)= (11\A)(x—1), %éxél.

Let 7 :[0,1]— [0, 1] be continuous and let it possess a unique turning point c.
Under certain further restrictions on 7, we show that the homeomorphism
# :[0,1]—[0, 1], which renders 7, and 7 topologically conjugate, is singular.

2. Main results

Let o : [0,1]— [0, 1] be any piecewise monotonic continuous map with unique
maximum, satisfying o/(0)=0= o(1). To every such map we can associate a
symmetry map 8 :[0.1]—[0.1] such that B(x)=y if and only if o(x)=a(y)

B # identity.
Let 7., A > 1, be as above. The symmetry map of 7, is given by
1 s
1+(1—A)x, Oéxéx
Alx)=1 x-1 oyt
1-x° AT T
" This rescarch was supported by NSERC Grants and an FCAC grant from the Qucbec
government.
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Let Q denote the class of continuous maps 7 :[0,1]— [0, 1], not necessarily
expanding, which satisfy:

(i) T has a unique turning point c,

(i) = is increasing and C' on (0, c) and decreasing and C' on (c, 1),

(iii) 70)=7(1)=0, 7(c)=1,

(iv) 1< A, =infg,|1'(x)].

LemMa 1. Let 7 € Q and define M, = sup.,| B'(x )|, where B is the symmetry
map for 7. If 1< A < A,, then

_ A1 A
a =log M, log x')>1.
2 2
Proor. Clearly A, =1/c. Since 8(0)=1 and B(c)=¢,

M,=1/c—1zZA,—1.
Thus,

o)/l
a log(/\_1 log A >log X1
THEOREM 1. Let 1 € Q. Assume
AN A—1)\!
@ (&) <(5%)
for some X > 1, where A, # A. Then any monotonic semi-conjugacy y from 7, onto
r (i.e. ¥ :[0,1]—[0,1] is monotonic and satisfies Yo 1. = to4) is singular.

)/log (%2)> . QED.

PrOOF. We begin by specifying a certain countable dense subset of [0,1/A]
on which ¢ can be determined exactly. To that end, let D denote the set of
inverse images under 7, of the turning point 1/A having the form

AT (=AY e (= A At

b4

where {n,,n., -+, n} is any finite sequence of positive integers. Note that
(1— 1) <0. We begin by showing that D is dense. Given any x €[0,1/A]- D,
choose n, such that

A ("1+1)<x < A_"‘
and set x, =A™, Then,

A-1Y _ A—-1Y, _,
xl—x<<T>A ™ oor xl—(—T--),\ <X,



Vol. 44, 1983 SINGULARITY OF TOPOLOGICAL CONJUGACIES 279

Since (A —1)/A" —0, we can find ‘an n, =1 such that
AT+ =)A< x <A (T = A)A T,

Letting x; =A™+ (1 —A)A ™" we get

x < xz+£—u; L L)),

Thus, we can find n; =1 such that
A n, +(1 —A)_("‘+"2)+(1 _A)z)\ (nl+n2+n_‘+l)<x
AT (L= AN P (D= APA T,

Then
1
x}_gA_:g_l)_A—(n]+n2+nJ)< X

where x; =A™+ (1 —A)A "2+ (1= A YA "*"*"), We continue in this way to
define a sequence of integers ni, n,,--- and a sequence of points {x}i-,€D
defined by

Since !

the sequence {xi}i-: converges to x.
We next consider how points in D behave under the semiconjugacy ¢. The
conjugacy condition may be written as follows:

{ T2 (Ax), 0=x g%,
= -1 )\ - l< <
@ Yx)=] 73 (__-A A x)), T EPES
where 7, =72 Ilo_,_., and 72> = 72 |i.1]- Equivalently, we have

{ $(x/2)= 13 (x)), 0=x=1,
2 A=A = 1)x) = 73X (X)) = BY(x), 0Sx SUA.

It follows that

o(E)=ra,  w(1-45) =g,
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and in general,

1=A) . -
‘!’(/\.. gl\n-—+n2) +%ﬁ')=72.T‘°B°72,72°B°'"°B°721‘(1)

Therefore, given any x €[0,1/A]— D with approximating sequence {x.}i_,
given by the sequence of integers {ni}i-:, we have

| (i) = G (x| < (/A MY 2 Brai(1) — 1.
But
| Brim(1)— 1] = Marsi(1) = Ma(1/A5)™,
since B(0)= 1. Thus,
|0 (x) = ¥ (xer) | < MET(1/A)™ s,
Note also that

(A _ l)k—l

Xk — Xk -1 ' = A

Hence,

h(x ) (e 1). _)i nyte +,.( M, )k-l
)«

k — Xk—1 A_l

We will show that

4 llm inf Mﬁ—ﬁ 0

Kk~ Xie—1

for almost every x €[0, 1/A]. Since the points xi_; and x, lie on opposite sides of
x, this implies that ¢'(x) =0 a.e. on [0,1/A] and hence on [0, 1] by (2). Thus ¢ is

singular.
Let x €(0,1/A)— D, and consider the inequality
A L M2 )k-—l
©) )" () <

If A > A,, this is equivalent to
(6a) n1+'-'+nk<ak+b1
whereas if A <A, we get

(6b) n1+"'+nk>ak+b2
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a =log(AA;—21)/'°g<XA;)

and by, b, are constants (depending on £). We note that a > 1: this follows from
(1) if A > A, and from Lemma 1 if A <A,.

If « <a and n, +- - - + n, = ek is satisfied for arbitrarily large k, so is 6(a) for
any b,. Similarly, if « > a and n, + - - - + nx > ak holds for infinitely many values
of k, so does 6(b) for any b,.

Let E={x€(0,1/A )l ¢¥'(x) exists}; we note that E is measurable and
m(E)=1/A (m = Lebesgue measure). Let

where

Ac=A(a)={x €O0,1/A)~D |n,+--+n = ak},
Ai=AYa)={xEO,1/A)=D|n,++-+n >ak},
E.=A,NE and Ei=AiNE.

Then m(A:)=m(E,), m(A)=m(E;) and m(A. U AL =1/ for a fixed a.
If A >A; and a <a the above implies that limsup. E, C{x € E Ia,b’(x) =0},
whereas if A <A, and a« > a we have

lim sup ELC{x €E | ¢'(x)=0}.
k

Thus if we show that

Ya if A> A,

m(E,)=m(A,) — {0 if A <A,

for some sequence {k:} of positive integers and for all rational & near a, the
result follows. Let

Fo={x€0,1/A)=D |ny,- -, n in the

approximating sequence for x are fixed}.

Then
1 (A—1)
m(Fk)=—i(..+—...+..L)
A A %

and

m(Ak)=m(£_)l {Fkln.+---+m§ak})

= ¥ mF)
ay+ebng Sak
=l
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(since the F, are pairwise disjoint)

1 “'i”‘ (A-1*
=x A;1|+---+nk9
n=0 n+--+m=k+n
nzl

where we choose k so that ak is integral.
Now, for a fixed n, the number of distinct k-tuples (n,," -, n.) satisfying
n+---+m =k+n is easily seen to be (*i7'). Thus

1 (ol [ntk—1
m(A)=y 2, pp* 'q ( k—1 )

where we have put p=1—1/A, ¢ =1—p =1/A. Since p*'q"("i%') is the
probability of the event S,.x—; = k —1: k — 1 successes after n + k —1 Bernoulli
trials with probability p of success, we have

(a=]k
m(A) =13, PP(Suns=k=1)

n=0

(a=Dk
=% 2 P(Saisx-i=k—1and S, . =k)
n=0

1 (o . .
= 2 P(first occurrence of k™ success is at trial n + k)
n=0

— Al P(Su Z k).

By the central limit theorem, if

1 1 r e
I == —— [4 x dx
V= k(1= ap)
Vakpq
then
lim I,, = lim m (Ay,),

where k. are integral.
Assume first A > A;. From (1) we have

(A2 o (A7) /roe () >1.

i.e., ap >1 and so 1 —ap <0 for rational « close to a. Thus

lim m(Ax,) = lim L, =%.
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If A <A, (1)is equivalent to ap <1landso 1 —ap > 1for « close to a. Thus
limm(A,)=IlimI, =0. Q.E.D.

To show that Theorem 1 has content, we establish

LEmMMA 2. If a>b>1 then
a_l a t 2 a (E)b (a_l)b—l
(b—l) >(b) “\5) 7 \p -1

a

f(")z(b:;)c_x'

We must show that if ¢ = a, f(0)< f(1) and if ¢ = b, f(0)> f(1) (the middle
inequality is trivial). By elementary calculus,

£_lc=xNa=b) —log(a_x)' x <b.

PrROOF. Put

f (a—x)b—-x) b—x/)’
If c =a,
[ _a-b_ [ a—b]
F=b—x log 1+b—x >0.
If c=b,

f_i_b—x_ (a—x)
f 1 7 x log b x <0.

CorOLLARY 1. If 1< A,# A, then 71, satisfies the conditions of Theorem 1.
Moreover, if T is any map in Q, which differs from some such 7., by a sufficiently
C'-small perturbation, then any monotonic semiconjugacy from 7, onto 7 is
singular.

Proor. If A,> A >1, we have from Lemma 2 that
&)A (A2_1>A~l
(A “\a-1/) -

Since M, =A,—1if r =1,, it follows that (1) of Theorem 1 is also satisfied.
If A>A,>1 we have from Lemma 2,

A—1\*" _)\_)A
(Az—l) ><A2 ’

which again is (1) of Theorem 1.
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Since (1) is an open condition, it is also satisfied by all 7 close to 7,,.
Q.ED.
REMARK. By putting 0, = supe.,| 7’| and m, = infe,| B'| one obtains a lower
bound for

l lffgxk 2— tl/!xk-nl '
X — X1 )

One can then show, using the same arguments as in Lemma 1 and Theorem 1,

that if
A 1N A-l
()5
T2 m-

Jl(x)=c ae.,

then

and conclude from this contradiction that a monotonic semiconjugacy ¢ from 7,
to v does not exist. However, this result is vacuous, since

) =) == =)

o) “\et) Tle'-1 =\ m

where ¢ is the turning point of 7. The middle inequality is strict if A # ¢~ by
Corollary 1.

ExamprLE. Condition (1) can be written as

ﬂ)\_ll AA- 1)
/\,\/(A»l) 2 .

M, <

Let A =2. Then,
M, <iAi

Choose A;=4 and 7(x)=4x on [0,i]. Then, since M,= A,—1, we require:
3=M,<4. Let 0<m <1 and let

Tx)=0G)"(1-x)", i=x=L
Clearly, 7 is continuous on [0,1]. Now B(x)=y iff 7(x)=7(y), i.e. iff
4x =(3)"(1-y)",
or

y =1-14mgtm,
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Thus, on differentiating, we obtain:

' = gX — 3 qUm 1 1/m 1
‘B (x)l 'dx =34""—x ,
and
= - 1 3
M, %.lg [ B'(x)|=34"m— (%)=~ ‘

Hence, 3= M. <4 iff } < m = 1. Thus, for any such m, condition (1) of Theorem
1 holds.

Given any A,>1 and M,>A,—1 we can define a map 1 € Q as follows.
Choose the turning point ¢ such that 1/c <A, < M,+ 1 and construct a strictly
increasing map 7, on [0, c] such that 7,(0)=0, 7,(c)=1 and inf|7](x)] = A..

Now, it is easy to see that any symmetry map B :[0,1]—[0, 1] satisfies:
B0)=1, B(c)=c, B(1)=0and B (., is the reflection of B |, around the line
y = x. Since M, > 1/c — 1 and the slope of the line joining points (0,1) and (c, ¢)
is —(1/¢ — 1), we can construct B

jv.c) satisfying
M,=sup |B'(x)|>1/c —1.
{U.c)

By reflecting around y = x, we define 8 on [0, 1].
Thus, so far, we have defined 7 |0 and B. To define 7, = 7 ||.,, We note that
from the definition of B, we have

72(x) = 1(B(x)).

This defines .. Clearly 72(c) =1, (1) = 0 and since ri(x)>0, B'(x)<0, 75<0.
Thus 7, is monotonic decreasing and hence 7 € Q.

ProrosiTioN 1. Given any A:>1 and M,>A,—1, let T€Q be a map
possessing these parameters. Then there exists A > 1 such that the topological
conjugacy from 1, onto 1 is singular.

ProOF. We have only to show that condition (1) is satisfied for some A > 1.
To see that this is, indeed, the case let A | 1 in (1) to obtain the inequality

/A, <1,
since x* — 1 as x — 0, which is obviously satisfied. Q.E.D.

COROLLARY 2. Let 1, be as in Theorem 1 and let it have injective invariant
coordinate {1] (for example, if 7, is expanding [1,2]), then r, is topologically
conjugate to 1, and the homeomorphisms 4 and ' are singular.
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Proor. That the conjugacy exists and is a homeomorphism follows from
arguments in [1,2,4]. The above result shows that ¢ is singular. It follows that
¢! must also be singular [5, p. 271, problem 13].

COROLLARY 3. Any expanding map 1, which satisfies the conditions of
Theorem 1 admits an uncountable family of invariant ergodic measures which are
mutually singular.

Proor. Consider the space € of continuous functions f : [0, 1] — [0, 1] satisfy-
ing f(0)=0, f(1)=1 and the transformation T : € — € defined by
(tztofon)(x), 0=x =1/A,
t2ofen)(x), 1YA=x=1.

€ is complete in the uniform metric and, since 7, is expanding, T, is a

N (T.Hx) ={

contraction mapping with unique fixed point . Theorem 1 and Corollary 1
apply to all maps 7, with A > max{A2, M, + 1} or A <min{A,, M+ 1}. Let A’, A",
A'# A" be any two allowable values for A. Let ¢, and ¢, be the conjugacies,
respectively, which map 7, 7.- onto 7. Then

m(A)=m($i'(A)) and m-(A)=m(y:'(A))
are two continuous ergodic measures invariant under 7. Since 7, is ergodic with

invariant measure m for any A > 1,
m,[0,c]=1/A" and m{0,c]=1/A",

m,- and m,- are mutually singular. Q.E.D.

3. Some consequences

PROPOSITION 2. Let 1, and 7 be as in Theorem 1, and let s be the conjugacy
which takes 7, to 7. Let 7,:[0,1]— [0, 1] be any map which is taken to 7, by the
conjugacy ¢ whose inverse is absolutely continuous. Then the topological conjug-
acy § o ¢ which takes 1, to 7 is singular.

Proor. Let E be a set of Lebesgue measure 0. Then B = ¢ '(E) has
Lebesgue measure 0 since ¢ ' is absolutely continuous. Since 4 is singular there
exists a set E, m(E)=0, such that m(¢(E))>0. But E =¢(B), where
m(B)=0. Hence m(y °¢(B))>0, and ¢ ¢ is singular.

ExampLE. Let 7(x)=4x(1—x). Then ¢(x)= (2/1r)sin“(\/;) takes 1, to

2x, 0=x =1,
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Let 7., A # 2, play the role of 7 in Theorem 1, where , singular, takes 7 to 7,.
Since ¢ (x) = (2/7)sin"(Vx), ¢ ' is absolutely continuous and ¢ ° ¢ taking 7, to
7, is singular. Hence 7 is the only 7, map for which the topological conjugacy
between 7, and 7, is absolutely continuous.

In [3], Kowalski studied continuity of absolutely continuous invariant meas-
ures for piecewise monotonic expanding maps. In this section we obtain a related
result for continuous invariant measures.

For A > [, define the map T, : € — € by (7). T, is a contraction mapping and
hence has a unique fixed point ¢, € € for each A >1. Let | || denote the
uniform norm on %, and let J denote either of the intervals (a, ) or (1, p), where
a =max{A,, M+ 1} and p = min{A,, M, +1}.

LeEmMMA 3. The map J—(%,| |) defined by A — Tif, for f € € fixed, is
continuous for all k = 1.

ProoF. Since

k times
(P ey
) Tarercromiofornoriron(x),  0=x=1/A,
(TfYx)=y _, o
(PYLRRREE PYED AL ALEREEE NE X A=x=1,
and 7, is continuous with respect to A, we obtain the result. Q.E.D.

ProposITION 3. The map J — (6,|| |) defined by A — 4, is continuous.

ProoF. Let A, — A as n —x, where {A,}CJ and A € J. Then

” ‘I’A,. =i ” = ” 'J’A,. - T‘;.‘l’x ” + “ T’;,‘/’A - T:l//A ” + ”Twlx —in ”

Since T,, is a contraction, T ¢, — ¢», as k —=. The second term on the
right-hand side tends to 0 as n — = by Lemma 3. The third term is identically 0.
Q.E.D.
Now for each A €J, ¢, induces a continuous ergodic measure which is
invariant with respect to 7 and which is given by m,(A)= m(¥;'(A)). The
distribution function associated with m, is

F(x)=m:'0,x])= ¢3'(x).
PrROPOSITION 4. The map J—(%6,|| |) defined by A — F, is continuous.

Proor. The map (6, [[)—(%,| ||) defined by f—f~' is a homeomor-
phism. This with Proposition 3 yields the result. Q.ED.
Let 7 be equal to 7 defined in the above example. Then we have the following
result: as A — 2, the continuous ergodic measures m,, invariant with respect to 7,
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approach the absolutely continuous ergodic measure m, invariant under 7,
uniformly.
For the same example, let

m(A)=m((A))

denote the continuous ergodic measure, invariant under r,, induced by .
Reasoning as above, it follows that A, — A implies 7, (0,x)— 7,(0,x) uni-
formly. This result is similar to results obtained in [3] for absolutely continuous
invariant measures.
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